Skip to main content

Posts

How space exploration will help us in future?

 How space exploration will help us in future?  The process of assembling the International space platform (ISS) started in 1998 and was completed in 2011, with five partners involved: Canada, Europe, Japan, Russia and therefore the us . It was initially planned to work only until the year 2020, but in 2014 the US decided to increase its life until 2024. Since then Russia has proposed to increase further the lifetime of the ISS to 2028, and therefore the US space agency NASA seemed able to accept this new extension. However, major space policy changes happened within the US in 2017, with the revival of a high-level White House body, the National Space Council (NSpC), chaired by the vice chairman . The new priority of the White home is a return to the Moon within the 2020s, as a step towards Mars within the 2030s. In order to free funds for this new strategy, the NSpC favours an end-of-life of the ISS in 2025. A compromise with Congress will likely cause the choi...

Dying stars breathe life into Earth: study

Dying stars breathe life into Earth: study As dying stars take their final few breaths of life, they gently sprinkle their ashes into the cosmos through the magnificent planetary nebulae. These ashes, spread via stellar winds, are enriched with many various chemical elements, including carbon. Findings from a study published today in Nature Astronomy show that the ultimate breaths of those dying stars, called white dwarfs, shed light on carbon's origin within the Milky Way . "The findings pose new, stringent constraints on how and when carbon was produced by stars of our galaxy, ending up within the staple from which the Sun and its planetary system were formed 4.6 billion years ago," says Jeffrey Cummings, an Associate Research Scientist within the Johns Hopkins University's Department of Physics & Astronomy and an author on the paper. The origin of carbon, a component essential to life on Earth, within the Milky Way galaxy remains debated amo...

Can energy be sucked out of a black hole?

Can energy be sucked out of a black hole?  Can energy be sucked out of a black hole?  A rotating region is such an extreme force of nature that it drags surrounding time and space around with it. So it's only natural to ask whether black holes might be used as some kind of energy source. In 1969, mathematical physicist Roger Penrose proposed a way to try to to just this, now referred to as the "Penrose Process." The method might be employed by sophisticated civilizations (aliens or future humans) to reap energy by making "black hole bombs." a number of the physics required to try to to so, however, had never been experimentally verified — so far . Our study confirming the underlying physics has just been published in Nature Physics. Around its event horizon (the boundary around a region beyond which nothing, not even light, can escape), a rotating region creates a neighborhood called the "ergosphere." If an object falls into the ergosphere...

what is the big bang theory ?

  what is the big bang theory ? The big bang  The Big Bang Theory is that the leading explanation about how the universe began. At its simplest, it says the universe as we all know it started with alittle singularity, then inflated over subsequent 13.8 billion years to the cosmos that we all know today. Because current instruments don't allow astronomers to see back at the universe's birth, much of what we understand about the large Bang Theory comes from mathematical formulas and models. Astronomers can, however, see the "echo" of the expansion through a phenomenon referred to as the cosmic microwave background. While the bulk of the astronomical community accepts the idea , there are some theorists who have alternative explanations besides the large Bang — like eternal inflation or an oscillating universe. The phrase "Big Bang Theory" has been popular among astrophysicists for many years , but it hit the mainstream in 2007 when a comedy show w...

Gravitational wave

Gravitational wave  Ripples in space itself have revealed a merger of an outsized region with an object thought to be too small to be a region .  Gravitational wave detectors have spotted a cosmic collision during which an enormous region swallowed up a mystery object seemingly too heavy to be a star , but too light to be a region . Weighing in at 2.6 times the mass of the Sun, the thing falls into a hypothetical “mass gap,” a desert between the heaviest star and therefore the lightest region that some theories predict—suggesting the gap doesn’t exist which those theories got to be amended. “People who thought there was a mass gap will need to rethink it, for sure,” says Cole Miller, an astrophysicist at the University of Maryland, College Park, who wasn't involved within the observation. He adds, however, “People aren’t getting to be joining cults because they can't survive this alteration in their worldview.” The data come from physicists working with the Laser...

What is called a star ?

 What is called a star ? A star ( sun ) A star is an astronomical object consisting of a luminous spheroid of plasma held together by its own gravity. the closest star to Earth is that the Sun. Many other stars are visible to the eye from Earth during the night, appearing as a mess of fixed luminous points within the sky thanks to their immense distance from Earth. Historically, the foremost prominent stars were grouped into constellations and asterisms, the brightest of which gained proper names. Astronomers have assembled star catalogues that identify the known stars and supply standardized stellar designations. The observable Universe contains an estimated 1×1024 stars,but most are invisible to the eye from Earth, including all stars outside our galaxy, the Milky Way . For most of its active life, a star shines thanks to thermonuclear fusion of hydrogen into helium in its core, releasing energy that traverses the star's interior then radiates into space . most prese...

what is wormhole?

what is wormhole? Wormhole  With all my enthusiasm for humanity's future in space, there's one glaring problem. We're soft meat bags of mostly water, and people other stars are really really distant . Even with the foremost optimistic spaceflight technologies we will imagine, we're never getting to reach another star during a human lifetime. Reality tells us that even the foremost nearby stars are incomprehensibly distant , and would require vast amounts of energy or time to form the journey. Reality says that we'd need a ship which will somehow last for hundreds or thousands of years, while generation after generation of astronauts are born, live their lives and die in transit to a different star. Wormhole  Science fiction, on the opposite hand, woos us with its beguiling methods of advanced propulsion. Crank up the warp drive and watch the celebs streak past us, making a journey to Alpha Centauri as quick as a pleasure cruise. You know what's ...